
E. H. SIMMONS AND VOLKER HEINE 635 

References 

BRADLEY, C. J. & CRACKNELL, A. P. (1972). The Mathematical 
Theory of Symmetry in Solids. Oxford: Clarendon Press. 

HEINE, V. (1960). Group Theory in Quantum Mechanics. Oxford: 
Pergamon. 

HEINE, V., LYNDEN-BELL, R. M., MCCONNELL, J. D. C. & 
MCDONALD, I. R. (1984). Z. Phys. B, 56, 229-239. 

HEINE, V. & PRICE, S. L. (1985). J. Phys. C, 18, 5259-5278. 
HEINE, V. & SIMMONS, E. H. (1987). Acta Cryst. A43, 289-294. 

JANSSEN, T. & JANNER, A. (1980). Ferroelectrics, 24, 11-22. 
LIFSHITZ, E. M. & PITAEVSKII, L. P. (1980). Statistical Physics, 

3rd ed., Part 1. Oxford: Pergamon. 
MCCONNELL, J. D. C. & HEINE, V. (1984). Acta Cryst. A40, 

473-482. 
MCCONNELL, J. D. C. & HEINE, V. (1985). Phys. Rev. B, 31, 

6140-6142. 
SHAW, J. J. A. & HEINE, V. (1987). In preparation. 
SIMMONS, E. H. (1987). In preparation. 
WOLFF, P. M. DE, JANSSEN, T. & JANNER, A. (1981). Acta Cryst. 

A37, 625-636. 

Acta Cryst. (1987). A43, 635-638 

Determining Skewness in Atomic Probability Density Functions for 
Non-centrosymmetric Structures 

BY R. J. NELMES AND Z. TUN 

Department of  Physics, University of  Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, Scotland 

(Received 4 July 1986; accepted 19 March 1987) 

Abstract  

Skewness in atomic probability density functions can 
be represented by odd-order cumulants in the 
Edgeworth expansion about a Gaussian distribution, 
or by odd-order quasi-moments in the Gram-Charlier 
expansion. In the case of the Edgeworth expansion 
it is known that the absolute values of some odd-order 
cumulants cannot be determined from Bragg reflec- 
tion data for non-centrosymmetric structures - 
because these cumulants affect only the phases of the 
calculated structure factors and not their magnitudes. 
It is shown that, in general, this problem is imposed 
by the form of the Edgeworth expansion and can be 
avoided by using the Gram-Charlier expansion 
instead. An example is given of the refinement of 
third-order quasi-moments for the non-centrosym- 
metric phase of PbTiO3, using neutron-diffraction 
data collected at the Institut Laue-Langevin, 
Grenoble. 

Many interesting phenomena are manifested in 
departures of atomic probability density functions 
(p.d.f.'s) from a purely harmonic form; and the anhar- 
monicity of p.d.f.'s can be investigated with accurate 
high-resolution X-ray or neutron diffraction data. A 
widely used method of modelling anharmonicity in 
least-squares structure refinements is based on the 
Edgeworth expansion of the p.d.f. (Johnson & Levy, 
1974), which gives the following form for the structure 
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factor up to sixth-order terms (Kuhs, 1983): 

FEw(h ) = ~ b, exp [ i(2~rx, h j -  KJkthjhk h, 
i 

+ K~ kl''' h;hkhthmh,,) 

_ (fl~k hjhk - K~ktmhjhkhlh,,, 
jklmno 

+ g i hjhkhthmhnho)], (1) 

where the summation is over the atoms in the unit 
cell (the repeated-index summation convention is 
assumed for the indices j, k, l , . . . ) ,  bi are the atomic 
scattering lengths (form factors for X-rays), x~ and 
fl~k are the positional parameters and the harmonic 
thermal parameters, and K jkl''" are  the anharmonic 
parameters. These last are known as cumulants. The 
odd-order cumulants model antisymmetric anhar- 
monicity, or 'skewness', in the p.d.f.; and the even- 
order cumulants model symmetric anharmonicity, or 
'kurtosis'. In practice, it is usually sufficient to include 
only the third- and fourth-order cumulants in a struc- 
ture refinement, and it is rarely, if ever, warranted to 
attempt to refine terms higher than sixth order. 
Though generally effective, this approach to anhar- 
monicity suffers the serious limitation that it is pos- 
sible to determine only the relative magnitudes of 
odd-order cumulants whose signs are not reversed by 
the space-group operations (Hazell & Willis, 1978). 
This is because increasing or decreasing such a 
cumulant by the same amount for all atoms - as the 
symmetry then permits - alters the phase but not the 
magnitude of the calculated structure factors [see (1)]. 
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This problem has been recognized for some time. 
It was noted and explained by Duckworth, Willis & 
Pawley in 1970 for the particular case of the K 123 

cumulants in hexamethylenetetramine* ( C 6 N 4 H I 2 ) :  
the authors could obtain only values relative to a K 123 
set arbitrarily to zero for the C atom. The same 
indeterminacy of the K 123 cumulant was encountered 
more recently by Moss, McMullan & Koetzle (1980) 
in their investigation of anharmonicity in zincblende 
(ZnS).t  Hazell & Willis (1978) gave general consider- 
ation to this aspect of refining third-order cumulants 
(and, implicitly, other odd orders) for non- 
centrosymmetric structures and - as follows from 
above - they concluded that all the odd-order 
cumulants of one atom in the structure have to be 
kept fixed in the ultimate case of space group P1. 
They made the further important observation that the 
arbitrariness lies in the refinement, and not in the 
structure itself: different absolute magnitudes of these 
odd-order cumulants, with the same relative magni- 
tudes, correspond to physically different crystal struc- 
tures. For example, in studying ZnS the problem is 
precisely to determine whether the skewness rep- 
resented by the K 123 cumulant is on the Zn atom, the 
S atom, or both (Moss et al., 1980). If it is the case 
that some (or all) of the odd-order anharmonicity 
affects only the phases of structure factors, a severe 
- and crystallographically perplexing - limitation is 
placed on the application of diffraction methods to 
the study of anharmonic distributions of all kinds. 
Although Hazell & Willis (1978) explicitly addressed 
only the cumulant, or Edgeworth, expansion 
approach to anharmonicity, their closing remarks 
appear to suggest that the problem is intrinsic to 
crystallographic refinement in general: certainly that 
is the construction that has been widely placed on 
the matter. But we shall argue that this is a false 
conclusion to draw: in general, the magnitudes of 
structure factors (and hence the measured intensities) 
are affected by the absolute as well as relative magni- 
tudes of all the asymmetric (odd-order) anharmon- 
icity. 

The argument can be presented diagrammatically 
for a simple non-centrosymmetric two-dimensional 
structure containing two atoms, A and B, in a primi- 
tive oblique cell (space group pl) .  Suppose that the 
A atom has a skewed anharmonic p.d.f, that can be 
represented by convoluting the atom's harmonic ther- 
mal motion with a triangular distribution of scattering 
density; and for simplicity suppose, further, that both 

* 1,3,5,7.Tetraazatricyclo[3.3.1.13.7]decane. 
t Yamanaka & Tokonami (1985) have recently claimed to resolve 

the problem in this case by ¢he use of Fourier difference maps. 
But it is a false claim. Difference maps have to be based on the 
phases obtained in a particular structure refinement, and this is 
nothing more than another way of applying a particular constraint 
(arbitrarily) to the cumulant values. The indeterminacy remains, 
albeit hidden. 

atoms have the same harmonic thermal motion. The 
structure can then be drawn with the common har- 
monic component omitted from both p.d.f.'s, as in 
Fig. l(a).  The corresponding Patterson function is as 
shown in Fig. 1 (b). Let the best Edgeworth-expansion 
fit to the skewed p.d.f. (up to fourth-order terms) be 
obtained with third-order cumulant values K ~  ~. 

Now consider the same structure, but with the 
anharmonicity on the B atom instead, such that its 
p.d.f, is fitted with third-order cumulant values - K ~  ~ 
- equal and opposite to those of atom A in Fig. 1. 
This structure and its Patterson function are depicted 
in Fig. 2. 

Clearly the two structures are distinguishable pro- 
vided the p.d.f.'s in structure I (Fig. l a) have a 
different form from those in structure II (Fig. 2a). 
This simply requires IbAl#lbBI, as in the figures 
(which have bA = 2bB). But the distinction cannot be 
captured by the cumulant model, because the model 
of structure I can be transformed to the model of 
structure II just by subtraction of K~ ~ from the third 
cumulants of both atoms - which alters only the 
phases in equation (1), as already explained. (This is 
a two-dimensional analogue of the indeterminacy 
encountered in, for example, the ZnS study referred 
to above.) However, it can be seen that the Patterson 
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Fig. 1. (a) A hypothetical two-dimensional structure in space group 
pl  with two atoms per unit cell, and (b) its Patterson function. 
The atoms, A and B, have scattering lengths bA and bn, respec- 
tively, and bA is taken to be 2bn. Only the anharmonic component 
of the atomic p.d.f.'s is shown: thus atom A has the skewed 
anharmonicity obtained by convoluting its harmonic thermal 
motion with the triangular distribution shown in (a), while atom 
B has purely harmonic thermal motion (taken to be the same 
as that of atom A). In both parts of the figure the 'peaks' are 
shown with areas in proportion to their relative weights. 
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functions of the two structures are different (given 
Ibal ~ Ib~l), and this implies that in general there are 
differences in the diffracted intensities. The problem 
is that the cumulant model of equation (1) is insensi- 
tive to these differences. 

An alternative approach to the general parameteriz- 
ation of anharmonic p.d.f.'s has been adopted by 
Zucker, Perenthaler, Kuhs, Bachmann & Schulz 
(1983) for their P R O M E T H E U S  suite of crystallo- 
graphic programs. They utilize the Gram-Charl ier  
expansion (Johnson & Levy, 1974) which yields the 
following form for the structure factor up to sixth- 
order terms (Kuhs, 1983): 

FGc(h) = ~ b, exp (2~rix~hj-fl~kh;hk) i 
x [ 1 - (4 /3  ) 7r 3 iC~ k~ hjhkh, 

+ (2/3)Tr4cJklmhjhkh,hm 

+ (4/15)7r 5 icJktm"hjhkhth,,h, 

- ( 4 / 4 5 ) - 6  "-qk'm"° hjhkh,h,,h,,ho ~ , (2) 

where, instead of the cumulants of (1), we have the 
'quasi-moments '  C~ kL. The  relationship between this 
and the Edgeworth-expansion approach to the 
modelling of anharmonicity, and their relative advan- 
tages, have been examined in detail by Kuhs (1983). 
What matters for our present purposes is that the 
odd-order quasi-moments do not appear in a pure 
phase factor in (2). The magnitudes of FGc(h) will 
thus depend on the absolute magnitudes of all the 
quasi-moments. 
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Fig. 2. The same as Fig. 1, except that atom B has the skewed 
p.d.f., while atom A has purely harmonic thermal motion. The 
skewness of atom B's p.d.f, is the inverse of that shown for atom 
A in Fig. 1. 

In a high-resolution neutron-diffraction study of 
PbTiO3 we have encountered significant odd-order 
anharmonicity, and have used the data (collected at 
the Institut Laue-Langevin, Grenoble) to test our 
conclusion that the Gram-Charl ier  approach is one 
way to overcome the problem of arbitrary odd-order 
terms. PbTiO3 has a cubic-to-tetragonal phase transi- 
tion on cooling through T¢ = 763 K (Shirane & Hosh- 
ino, 1951). The space group below T¢ is non- 
centrosymmetric, P 4 m m ,  and the two cumulants K 113 
and K 333 have to be set arbitrarily to zero (or some 
other value) for one of the atoms in the structure 
when refining with (1). In our first study of anharmon- 
icity ---60 K below Tc (Nelmes & Kuhs, 1985) we 
refined the quasi-moments of (2), with the C 1~3 and 
C 333 values set to zero for the Pb atom in the (mis- 
taken) belief that this was necessary - and basing the 
choice of constraint on a generally held assumption 
that the Pb thermal motion is close to harmonic above 
and below Tc in PbTiO3. However, we have since 
found that we can indeed refine all of the non-zero 
third-order quasi-moments without any constraints, 
using neutron-diffraction data collected out to 
(sin 0)/A = 1 .4~-1 ;  and these refinements suggest 
that it is in fact the Pb p.d.f, that is significantly 
skewed below T¢. The latter point is of considerable 
interest in relation to recent refinements of data col- 
lected at T~ + 2 K, which reveal (very unexpectedly) 
that the Pb atom has a highly anharmonic, and 
possibly disordered, p.d.f, in the cubic phase. (Details 
of this work will be published separately.) 

We thus reach these conclusions: 

(i) The absolute magnitudes of skewness in the 
atomic p.d.f.'s of a non-centrosymmetric structure can 
be determined in principle if the structure is distin- 
guishable from the inversion of itself. In the case of 
the structures in Figs. 1 and 2, where both atoms are 
assumed to have the same harmonic thermal motion, 
this condition reduces to the requirement that IbAI # 
I bel; if the two a{oms had different harmonic thermal 
motion the structures would be distinguishable even 
with I bAI = I bel. But it is apparent that 'distinguishabil- 
ity' will usually be greater the larger is the difference 
in magnitude of the scattering lengths (form factors). 

(ii) The skewness can be determined from diffrac- 
tion data of sufficient accuracy and resolution in 
relation to the 'distinguishability', provided the 
p.d.f.'s are not modelled in a way that treats odd-order 
anharmonic parameters as simply higher-order terms 
in the phase of the structure factor. The Gram-Char-  
lier expansion satisfies this condition. Whilst there is 
no reason to suppose that the Gram-Charl ier  
approach makes maximal  use of the information in 
the diffraction data, it is clearly to be preferred over 
the Edgeworth expansion - in this way adding to the 
other general advantages of the Gram-Charl ier  
expansion that have been expounded by Kuhs (1983). 
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(iii) Because the information distinguishing struc- 
tures such as those in Figs. 1 and 2 will mainly reside 
in small intensity differences at high (sin 0)/;t, accu- 
rate determinations of absolute magnitudes for all 
odd-order anharmonic parameters are more likely to 
be achieved with neutron-diffraction techniques. A 
further inherent advantage of neutron diffraction is 
the possibility of maximizing the difference in magni- 
tude of the scattering lengths by varying the isotopic 
proportions of the atoms in a structure. 

Finally, a note of caution. When fourth-order terms 
(C jktm) a re  included in our PbTiO3 refinements, 
parameter correlations arise which reduce the 
accuracy with which the C 113 and C 333 quasi- 
moments are determined. This highlights the need 
always to test for significant fourth-order terms in 
studies of skewness: such terms may substantially 
increase the demands on data accuracy and resolution 
relative to the intrinsic 'distinguishability' of the 
skewness. 

We are grateful for a number of helpful discussions 
about anharmonic structure refinement with W. F. 

Kuhs, who has also played a large part in the collec- 
tion and analysis of the PbTiO3 data. The work is 
part of a research programme funded by the Science 
and Engineering Research Council. 

References 

DUCKWORTH, J. A. K., WILLIS, B. T. M. & PAWLEY, G. S. (1970). 
Acta Cryst. A26, 263-271. 

HAZELL, R. G. & WILLIS, B. T. M. (1978). Acta Cryst. A34, 
809-811. 

JOHNSON, C. K. & LEVY, H. A. (1974). International Tables for 
X-ray Crystallography, Vol. IV, pp. 311-336. Birmingham: Kyn- 
och Press. (Present distributor D. Reidel, Dordrecht.) 

KUHS, W. F. (1983). Acta Cryst. A39, 148-158. 
Moss,  B., MCMULLAN, R. K. & KOETZLE, T. F. (1980). J. Chem. 

Phys. 73, 495-508. 
NELMES, R. J. & KUHS, W. F. (1985). Solid State Commun. 54, 

721-723. 
SHIRANE, G. & HOSHINO, S. (1951). J. Phys. Soc. Jpn, 6, 

265-270. 
YAMANAKA, T. & TOKONAMI, M. (1985). Acta Cryst. B41,298- 

304. 
ZUCKER, U. H., PERENTHALER, E., KUHS, W. F., BACHMANN, 

R. & SCHULZ, H. (1983). J. Appl. Cryst. 16, 358. 

Acta Cryst. (1987). A43, 638-645 

Resolution Analyses for Miissbauer Diffraction: Resolved TDS Profiles in Silicon* 

BY M. L. CROW, G. SCHUPP AND W. B. YELON 

Research Reactor and Department of Physics, University of Missouri, Columbia, MO 65211, USA 

AND J. G .  MULLEN AND A. DJEDID 

Department of Physics, Purdue University, West Lafayette, IN 47907, USA 

(Received 2 January 1987; accepted 31 March 1987) 

Abstract 

The resolution function for MSssbauer y-ray scatter- 
ing and the thermal diffuse scattering (TDS) near 
the 444 reflection in silicon have been measured 
with high-intensity M6ssbauer radiation from the 
46.48 keV transition in 183W. A general analysis of 
the resolution function has been carried out for the 
first time which shows that its energy and momentum 
components can be factored independently with the 
energy resolution being determined by the M6ssbauer 
resonance. The half-widths of the momentum reso- 

* This material was prepared with the support of the US Depart- 
ment of Energy, Grant Nos. DE-AC02-83ER 45017, DE-FG02- 
85ER 45200, and DE-FG02-85ER 45199 A00. However, any 
opinions, findings, conclusions or recommendations expressed 
herein are those of the authors and do not necessarily reflect the 
views of DOE. 

lution ellipsoid were measured to be 0.011, 0.11 and 
1.13 A-1 in the transverse, longitudinal and vertical 
directions, respectively. The ratios of these half- 
widths are significantly different from those com- 
monly encountered in neutron scattering. These 
analyses indicate that the observed broad distribution 
of inelastic scattering in the TDS profiles is consistent 
with published elastic constants for silicon. 

Introduction 

Thermal diffuse scattering (TDS) is coherent inelastic 
scattering due to lattice vibrations in a crystalline 
solid. In a conventional X-ray diffraction experiment, 
the TDS, with energy transfer of 0-0.1 eV, is not 
directly separable from the Bragg scattering intensity, 
since these energy shifts are smaller than the 1-5 eV 
intrinsic energy spread of common X-ray lines. The 
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